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Turbulent and laminar pulsating flows in a straight smooth pipe are compared at 
identical frequencies and Reynolds numbers. Most measurements were made at a 
mean Reynolds number of 4000, but the influence of Re wm checked for 
2900 < Re < 7500. The period of forcing ranged from 0.5 to 5 s, with corresponding 
change in the non-dimensional frequency parameter a = Rd((w/v)  from 4.5 to 15. The 
amplitude of the imposed oscillations did not exceed 35% of the mean in order to 
avoid flow reversal or relaminarization. Velocities at the exit plane of the pipe and 
pressure drop along the pipe were measured simultaneously ; velocity measurements 
were made with arrays of normal hot wires. The introduction of the periodic surging 
had no significant effect on the time-averaged quantities, regardless of the flow regime 
(i.e. in both laminar and turbulent flows). The time-dependent components at the 
forcing frequency, represented by a radial distribution of amplitudes and phases, are 
qualitatively different in laminar and turbulent flows. The ensemble-averaged 
turbulent quantities may also be represented by an amplitude and a phase; however, 
the non-harmonic content of these intensities increases with increasing amplitude of 
the imposed oscillations. A normalization procedure is proposed which relates 
phase-locked turbulent flow parameters in unsteady flow to similar time-averaged 
quantities. An integral momentum equation in a time-dependent flow requires that 
a triad of forces (pressure, inertia and shear) will be in equilibrium at any instant 
of time. All the terms in the force-balance equation were measured independently, 
providing a good check of data. The analysis of the experimental results suggests that 
turbulence adjusts rather slowly to the local mean-flow conditions. A simple 
eddy-viscosity model described by a complex function can account for ‘memory’ of 
turbulence and explain the different phase distribution in laminar and turbulent 
flows. 

1. Introduction 
The importance of studying time-dependent flows in general, and pulsating pipe 

flow in particular, is obvious. Most biological flows are pulsating, perhaps because 
the peristaltic pump is the simplest pump employed by a biological system. Pulsating 
pipe flows were therefore extensively studied by investigators concerned with 
medicine or biology (e.g. Caro et al. 1978; Hussain 1977). Non-steady flows occur also 
in many engineering applications, for example : the discharge of any piston pump is 
pulsating, the flow in an intake or exhaust manifold of an internal combustion engine 
is pulsating, the flow in hydraulic or pneumatic lines and control systems often 
pulsates. 

The periodic nature of this type of turbulent flow suggests the decomposition of 

(1) 

any flow variable g(z, t )  into 3 components (Hussain & Reynolds 1970) 

g(z, t )  = 9(4 + <g@, $I> +9’(z, t ) ,  
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where g(x) is the temporally averaged value of the variable g(x,t) at  point x and 
(g(x,q5)) is the contribution of the periodic part at  a phase angle q5 at the same 
point x. A distinction is sometimes made between ‘pulsating’ and ‘oscillating’ flows; 
the former term is used whenever the oscillations are superimposed on a non- 
vanishing steady velocity, while ‘oscillating’ flow refers to g(x) = 0. The phase- 
dependent part of the flow, (g), is referred to as the oscillating part. 

Assuming that the flow is not only periodic, but also harmonic, the periodic 
component may be represented by the real part of the exponential 

<g(x,q5)) = Re{[(g(x))l exp (W-4q))L (2) 

where [(g(x))] is the amplitude of pulsations while q5q(x) is a phase lag angle. 
All phase angles mentioned in this work refer to the phase of the pressure drop. 
Whenever a periodic motion is not simply harmonic the time-dependent variable can 
always be expanded in Fourier series, and the right-hand side of (2) will become the 
leading term in the expansion. 

The first solution for the velocity distribution in the fully developed oscillating pipe 
flow was obtained by Sex1 (1930). Womersley (1955), Uchida (1956) and others solved 
the problem again and calculated the phase and amplitude relationship among the 
pressure gradient, the mean bulk velocity and the shear stress. Since Uchida’s 
solution is presented in the most convenient form, it will serve as the main reference. 

Denison (1970) and Denison, Stevenson & Fox (1971) reported on measurements 
made in pulsating laminar flow with directionally sensitive laser velocimeter. The 
experimental results obtained at a mean Reynolds number of about lo00 and 
frequency parameter a = R(o/v) i  varying from 4 to 6 agreed with the theory of 
fully developed flow. Kirmse (1979) used a laser-Doppler anemometer to measure 
pulsating turbulent pipe flow in water at  high frequencies (55 < u < 137). The phase 
shift between pressure and velocity a t  all radial positions and a t  all frequencies was 
found to be 90”. An eddy-viscosity model predicted reasonably well the time-dependent 
velocities in this flow. Ramaprian & Tu (1980) observed that at  mean Re = 2200 the 
phase of velocity pulsations in the central region of the pipe lagged behind the 
pulsations near the wall. Poor angular resolution in their experiments prevented them 
from getting quantitative information on phase angles. The velocity profiles, 
measured in laminar pulsating flow, were in good agreement with the theoretical 
results of Uchida, and it was concluded that the imposed oscillations have no effect 
on the time-averaged properties of the flow. In the later work, Tu &, Ramaprian (1983) 
performed measurements in turbulent pulsating pipe flow at Re = 50000. They 
concluded that at low frequencies of pulsations (compared to the bursting frequency) 
there is no significant influence of pulsations on time-mean Re = 5.7 x lo4 for a wide 
range of frequencies. The time-averaged flow was not affected by the imposed oscil- 
lations. Three flow patterns - quasi-steady, intermediate, and inertia, dominated - 
were distinguished in the oscillatory component of the flow. The transition from one 
pattern to another was found to be dependent on the frequency parameter a and on 
the average Reynolds number. The data-acquisition method precluded the possibility 
of obtaining ensemble-averaged results and therefore only short-time-averaged data 
was analysed. 

Each of the above investigations was carried out in either laminar- or turbulent-flow 
regimes. Since our eventual goal is to understand transition from laminar to turbulent 
flow it was advisable to study a case in which all controllable parameters (e.g. u, Re) 
remain invariant when the flow is switched from a fully developed laminar to a fully 
developed turbulent regime. This decision restricts the choice of some experimental 
parameters, in particular Re. 
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FIGURE 1. The experimental facility. 

The most severe limitation on the choice of Re stems from the fact that for a 
fully developed laminar pipe flow the parameter ( z /D) /Re  3 0.1 (Wygnanski & 
Champagne 1973). Thus for a pipe of length 500 diameters the Reynolds number 
should not exceed 5000. On the other hand, detailed meaaurements in the wall region 
in the turbulent pulsating flow can be only made at low Re and, therefore, most of 
the measurements in this investigation were carried out a t  Re = 4000. Laufer (1954) 
showed that most of the differences between fully developed pipe flow at Re = 5 x lo4 
and Re = 5 x lo6 occurred near the wall (i.e. at r / R  3 0.8). Lowering the Re by an 
additional order of magnitude (i.e. to Re = 4.2 x los (Wygnanski t Champagne 1973) 
and comparing the data with measurements made at Re = 5 x lo4 did not indicate 
a larger difference than that already observed by Laufer between Re = 5 x lo4 and 
Re = 5 x lo6. Even at the lowest Re considered the characteristic frequency of 
turbulence was at leaat one order of magnitude higher than the frequency of the 
imposed oscillations. 

The present investigation examines the interaction between the imposed oscillations 
and the random turbulent motion. The relaxation of turbulence as i t  passes through 
the forcing cycle was considered for the purpose of theoretical modelling. The 
experiments reported were carried out in air at 2900 f Re < 7500 and at dimensionless 
frequency 4.5 < a 6 15. At these frequencies compressibility effects in the pipe can 
generally be neglected although the response of the entire system to changes in volume 
and ensuing pressure oscillations we& considered (Shemer 1981). Neither flow 
reversal nor turbulent-laminar transition occurred in any of the experiments reported 
thus far. Both phenomena can happen whenever the amplitude of the imposed 
oscillations is large. 

2. A general description of the experimental procedure 
A straight, smooth aluminium pipe 33 mm in diameter and 500 diameters long was 

used. The facility, shown schematically in figure 1, was originally used by Wygnanski 
& Champagne (1973), and described in detail in their paper. As a result of careful 
alignment and smooth inlet, laminar flow could be retained at Reynolds numbers 
exceeding 2 x lo4 without the addition of screens in the settling chamber. The mean 
flow was supplied by a high-pressure source (6 atmospheres) controlled by a precise 
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pressure regulator which ensured that the flow rate was independent of the superim- 
posed pulsations and the flow regime (i.e. whether the flow was laminar or turbulent). 

Pressure oscillations were introduced by a valveless piston pump, connected to the 
settling chamber (see figure 1). The piston diameter was 90 mm, and its displacement 
could be changed from 5 to 75 mm in 17 discrete steps. The harmonic distortion of 
the pressure oscillations, defined as the ratio of the power spectrum coefficient at the 
forcing frequency to the sum of the coefficients at all frequencies in the spectrum, 
was generally higher than 99 %. The pump was driven by 1.5 h.p. variable-speed 
motor, permitting a change in the period of pulsations between 0.5 and 5 s. The 
repeatability of the period was better than 0.3 yo. 

Velocity measurements were made with a rake of 9 hot wires, distributed evenly 
in the radial direction at distances equivalent to r / R  = 0.12 between neighbouring 
wires; thus by locating the first wire on the centreline of the pipe the 9th wire was 
located at a distance 0.5 mm from the wall (i.e. at  r / R  = 0.97). All velocity measure- 
ments were taken a t  the exit plane of the pipe. A 10 channel constant-temperature 
hot-wire anemometer and 10 channel amplifier were used in the experiment. The 
output of the amplifier was connected via an analog-to-digital converter to a 
PDP 11/60 minicomputer for further processing. 

The hot wires were calibrated in a wind tunnel, which provided a stable reference 
velocity between 30 cm/s and 15 m/s. Although flow reversal was avoided, very low 
velocities occurred in the pipe as a result of the superimposed pulsations. It was thus 
necessary to calibrate the wires at the lowest velocities anticipated in the experiment. 
Since a Pitot tube is not an accurate instrument for measuring air velocities below 
1.5 m/sec, the frequency of vortices shed by a circular cylinder was used for 
calibration (Shemer 1981). The calibration of hot wires was done digitally; the 
detailed description of the calibration procedure may be found in the thesis of Oster 
(1980) and in Oster & Wygnanski (1982). 

A pressure transducer, dynamically responding to 1000 Hz, recorded the pressure 
at the inlet. The instantaneous gauge pressure divided by the length of the pipe 
yielded the instantaneous pressure gradient in this experiment. The assumption that 
the pressure drops linearly was checked experimentally and was shown to be valid. 
The steady response of the transducer was calibrated against a Fuess micromanometer. 
The output voltages of the anemometers and the transducer were amplified to match 
the full range of the 12 bit analog-to-digital converter. The velocity and pressure 
signals were sampled a t  a predetermined frequency, and converted into 16-bit words 
arranged in buffers. 

The period of pulsations was determined by the computer at the initiation of each 
measurement with the help of the optical switch. A cylinder, 1.5 mm in diameter, 
connected to a flywheel passed at each revolution through a narrow gap of the optical 
switch, causing a change in the output current, which operated a TTL Schmidt 
trigger. The trigger signal served as an input to the A/D converter and was sampled 
at a predetermined rate, controlled by a 1 MHz clock. The period was derived from 
the number of sampled points between two subsequent trigger pulses, and the result 
was averaged over 10 cycles. 

With the period of pulsations known, the sampling frequency was fixed in such a 
way that either 1024, 2048 or 4096 points were sampled per channel per period in 
order to facilitate the processing of data using a Fast Fourier Transform (FFT). The 
data was acquired continuously by dividing the required memory into two buffers; 
thus, while one buffer accepted the information sampled, the content of the other 
buffer was recorded on a magnetic tape. The output of the optical switch was 
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connected to an additional input channel and provided the required phase infor- 
mation. A total of 11 data channels were thus sampled: 9 channels containing velocity 
information, 1 pressure and 1 phase information. At present, this method is limited 
to a maximum sampling rate of 1800 data points per channel per second. This 
frequency was quite adequate in the range of Re considered. The ‘raw’ signals 
recorded on tape were processed at a later stage. 

A typical record exceeded 8 periods of pulsations. In laminar flow 7 such records 
were usually acquired, providing 56 periods containing 1024 sampled points per 
period. In  turbulent flow, the number of records was usually 30, giving 240 periods 
with the number of points ranging from 1024 to 4096, depending on the duration of 
the period. 

The undisturbed flow was laminar a t  all Reynolds numbers and frequencies 
considered. Turbulence was triggered artificially by a protuberance (a cylinder 
2.2 mm in diameter) which was inserted diametrically into the pipe 20 diameters 
downstream of the entrance. The disturbance tripped the flow which became fully 
turbulent at all Reynolds numbers exceeding 2700. When the cylinder was removed 
the flow reverted to its laminar state; thus, this simple procedure enabled measure- 
ments in laminar or turbulent flows while keeping all other controllable parameters 
constant. 

3. Experimental results 
3.1. Mean $ow: steady us. pulsating velocities and pressure 

The time-averaged parabolic velocity profile in laminar flow was unaffected by the 
imposed pulsations. Three turbulent velocity profiles, one measured in steady flow, 
and the other two measured in pulsating flow at identical Re = 4000 and period 
T = 1.34 s (a = 8.9), are compared in figure 2. The relative amplitude of the forced 
oscillations are 0 yo, 20 yo and 35 yo. No significant difference can be observed be- 
tween steady and pulsating time-averaged velocity profiles, provided the relative 
amplitude does not exceed 20 %. While independence of mean velocity profile 
on the imposed oscillations in fully developed laminar flow results from the 
linearity of the NavierStokes equations, in turbulent flow it indicates that the 
time-averaged Reynolds stresses are also insensitive to forcing. This result is 
in agreement with the conclusions of most investigators of the pulsating pipe flow. 
Tu and Ramaprian (1983) obtained, however, different results at Re = 50000, in 
particular at high-frequency oscillations. 

The friction coefficient A ,  calculated from the Darcy’s formula, 

&I L P  _ -  -A---,  
P 0 2  

did not show any difference between steady and pulsating flow in either laminar or 
turbulent regimes. The measured friction coefficient in laminar flow did not differ 
notably from the value of 64/Re. In  turbulent flow the value of A was in good 
agreement with the values quoted in the literature for smooth pipes (see Schlichting 
1975). 

3.2. Phase-averaged velocities: laminar us. turbulent flow 
Phase-averaged data in either laminar- or turbulent-flow regimes provides the first 
two terms in the decomposition of (1). One may check whether the velocity 
oscillations are harmonic by expanding the ensemble-averaged signals in Fourier 
series. The ‘power’ spectra of these series were calculated, and the ratio of the two 

11-2 
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FIGURE 2. Mean turbulent velocity profiles measured at Re = 4OOO. 

coefficients corresponding to the fundamental frequency wo and its first harmonic was 
determined. For moderate amplitudes of velocity oscillations employed in the present 
investigation, this ratio was less than 3 %, thus providing the justification for the 
harmonic assumption. 

The harmonic character of the pulsations enables one to represent the phase- 
averaged velocity by an exponential form, (2), and alleviates the necessity of 
describing the temporal and spatial changes in velocity by plotting a large number 
of velocity profiles. Two functions can fully describe the oscillating component of 
velocity at the imposed frequency : (i) the amplitude distribution [<u(r))]'; and (ii) 
the phase angle $u(r) relative to the phase of the pressure oscillations. In order to 
obtain these functions, the phase-averaged velocity was Fourier transformed. The 
coefficients corresponding to the oscillations at the forcing frequency 1/T were then 
used to find the amplitude function [<u(r)>] and the initial phase angle $,,(r). From 
the initial phase of the velocity oscillations the initial phase of the pressure oscillations 
was subtracted, giving phase angles $,(r) relative to pressure. 

The dependencies of the measured amplitudes of the cross-sectionally averaged 
bulk velocity on the imposed pressure oscillations for two frequencies are shown in 
figure 3. The response of the velocity amplitude to the imposed forcing is hardly 
affected by the flow rbgime. The amplitude of the bulk velocity is proportional to 
the pressure, and within the experimental scatter there is no difference in the slopes 
between laminar- and turbulent-flow r6gimes, at least for T = 2.42 s (a = 6.6). A t  
higher frequency (a = 8.9, T = 1.34 s )  a nonlinearity is noticed when the flow is 
turbulent, the bulk velocity amplitudes are somewhat higher in turbulent than in the 
corresponding laminar flow. For a given amplitude of pressure oscillations, the 
amplitude of the bulk velocity oscillations [( v)] depends strongly on frequency. If 
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FIGURE 3. The dependence of the amplitude of the bulk velocity on the amplitude 
of forcing in laminar and turbulent flows at Re = 4OOO. 

IT is the steady part of the bulk velocity (U = &/nR2, where & is the mean flow rate) 
and is the steady pressure drop, then the relationship between the ensemble- 
averaged time-dependent parts (v> and (Ap) can be expressed by the equation 

where the amplitude coefficient ug = ([(Q)]/&)/([(G)]/Ap) and the phase lag #q 

were calculated for fully developed laminar flow by Uchida (1956). A t  very low 
frequencies (a < 1) u x 1 and the phase lag #11 0. Thus, when the frequency of the 
imposed pulsations is low, the flow at any instant behaves like Poiseuille flow at the 
appropriate instantaneous pressure gradient. Inertia effects become noticeable with 
increasing frequency when the flow can no longer follow the rapid changes in pressure. 

The mechanical power W necessary to push the flow at rate Q through a pipe in 
which the pressure drops by Ap is proportional to the product QAp. In  pulsat- 
ing flow the power is time-dependent, and the instantaneous power consumption is 
W = (G+ (Ap)) (&+ (Q)). Representing the oscillationa in pressure and in flow 
rate by the corresponding amplitudes and phase angles and averaging over the period, 
one obtains: 

W =  &G+ [(Ap)] [(Q)] C O S U ~  cos ( ~ t - 4 ~ )  

The additional time-averaged power necessary to impose the pulsations on the steady 
flow is thus proportional to [(A,)] [(Q)] cos#,. 

At a given frequency the phase angle #* is the main contributor to the difference 
in the time-averaged power consumption between laminar and turbulent flows. In 
laminar flow the phase angle hardly deviates from 90" (it changes from 85" at 
T = 0.56 s (a = 13.8) to about 78" at T = 2.4 s (a = 6.6)). In  turbulent flow, a change 
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FIQURE 4. Radial distribution of q5u in laminar and turbulent flows at Re = 4000: x , measurements 
in laminar flow; A, measurements in turbulent flow. The solid line represents the theoretically 
calculated distribution in fully developed laminar flow. 

in frequency causes a more significant decrease in the phase lag of the flow behind 
the pressure drop. At high frequencies there is only a small difference in g5q between 
laminar and turbulent flows; at T = 0.56 s g5q is about 85' in both cases. In  turbulent 
flow g5q decreases fast with decreasing frequency (at T = 2.4 s qiq x 50°), and cosg5, 
therefore becomes larger than in the corresponding laminar case. 

In  the absence of viscosity the pressure gradient, being the only driving force, is 
in phase with the acceleration of the fluid. The velocity lags 90" behind pressure. The 
radial distribution of the phase angle is shown in figure 4 for Re = 4000 and various 
periods of oscillations. The solid lines show the theoretical prediction of Uchida, while 
the crosses and the triangles give the measured phase angles in fully developed 
laminar and turbulent flows, respectively. A good agreement with the theory was 
obtained in the laminar case, with the exception of lowest frequency measured; in 
this case the influence of the entrance region becomes more pronounced (Shemer 
1981). The phase lag on the centreline in laminar flow is usually W", decreasing to 
approximately 45' near the wall. 

In  turbulent flow the conditions are different. The dimensionless frequency 
a = (w/v) i  is no longer a controlling parameter because the molecular viscosity is 
irrelevant and could perhaps be replaced by an equivalent eddy viscosity eT, which 
is orders of magnitude larger than E .  The effective a is therefore much lower, and the 
phase lag of the velocity in the central region of the pipe decreases more quickly with 
the increasing period than in the corresponding laminar flow. In contrast to laminar 
flow, the phase lag in the wall region increases towards the wall. The qualitative 
nature of the result was noticed by Ramaprian & Tu (1980). Shemer & Wygnanski 
(1981) attributed this phenomenon to the relatively slow adaptation of the turbulence 
to the local flow conditions, manifested in this case in the phase lag of Reynolds stress 
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FIQURE 5. The dependence of $, on the amplitude of oscillations at Re = 4000. The solid line 
represents the theoretically calculated phase distribution in the corresponding fully developed 
laminar flow, (4) T = 2.4 8, (a) T = 1.25 8. 

behind the radial derivative of the oscillating velocity component. This phase lag 
suggested that the effective eddy viscosity is a complex number. Calculation based 
on a model using complex eddy viscosity confirmed this suggestion. 

The radial distribution of the phase lag in velocity in the turbulent flow depends 
on amplitude and on Reynolds number. The dependence on the amplitude of 
pulsations is rather weak. The radial distribution of the phase lag for two amplitudes 
of pulsations at two frequencies is presented in figures 5(a) and (b). At low frequency 
(5" = 2.4 s) a change in amplitude caused no concomitant change in phase in the 
central region of the pipe. At higher frequency (T = 1.25 s) the influence of amplitude 
on the phase angle is felt across the entire cross-section. However, a large increase 
in amplitude results in a relatively small change in the phase angle (less than 5'). 
The linear dependence if the velocity amplitude on forcing (figure 3) and the 
independence of the radial distribution of $,, on the forcing amplitude suggest that 
at sufficiently low amplitudes of forcing turbulent pulsating flow behaves in a linear 
manner. 

The dependence of the phase angle on the mean Reynolds number in turbulent flow 
is more pronounced. A characteristic eddy viscosity increases with increasing Re, 
reducing effective a. The phase lag in velocity, therefore, decreases with increasing 
Re (figure 6) .  On the other hand, the viscous sublayer becomes thinner with increasing 
Re, and therefore the phase lag at Re = 7500 is practically constant across the pipe. 

A qualitative difference between laminar and turbulent pulsating flows may be 
noticed in the radial distribution of the amplitude in the velocity oscillations. In  
laminar flow, these amplitudes attain a maximum within the Stokes layer near the 
wall, while in turbulent flow the maxima are shifted to the centre of the pipe 



322 L. Shemer, I .  Wygnanski and E .  Kit 

FIQURE 6 FIGURE 7 

FIQURE 6. The dependence of q5,, on Re in turbulent flow at T = 2.4 8, [( U ) ] / o  % 20%. 

FIGURE 7. The radial distribution of velocity amplitude in laminar and turbulent flows at 
Re = 4000. The solid line is the theoretically calculated distribution in laminar flow. 

(figure 7). The theoretically calculated distribution of amplitudes in laminar flow 
(Uchida 1956) is shown also in figure 7 for comparison. 

The amplitude distribution of the axial component of velocity in the turbulent flow 
is nearly uniform in the central region of the pipe, and decreases rapidly near the 
wall. Increasing the mean Re or decreasing the frequency of oscillations results in a 
more uniform distribution of the velocity amplitudes in turbulent flow. The reasons 
for this effect were already discussed in conjunction with the radial distribution of 
the phase lag. 

3.3. Turbulent-$ow parameters 
3.3.1. Turbulent velocity jluctuations 

The instantaneous axial (u)  and radial (v) velocity components, measured during 
a single period, are shown and compared with their respective phase-averaged values 
in figure 8; the variation of pressure with time is shown above the velocities. One 
may observe that (i) the phase-averaged radial velocity component vanishes 
throughout, thus there are no Reynolds stresses associated with orderly pulsating 
part of the flow, and (ii) the amplitudes and the prevailing frequencies of the turbulent 
velocity fluctuations depend on the phase of the imposed oscillations. 

The dependence of the turbulent activity on the phase of the forcing becomes more 
evident at higher amplitudes of pulsations. Oscillating velocities recorded at high 
amplitudes of excitation (figure 9) indicate a partial laminarization during the time 
corresponding to minimum velocity. A ‘breakdown ’ to turbulence re-occurs when the 
instantaneous velocity is a maximum ; at that time the amplitudes of the turbulent 
fluctuations increase suddenly. The decrease in the amplitude of the fluctuations on 
the decelerating portion of the cycle is relatively gradual. 
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FIGURE 10. The radial distribution of r.m.8. values of turbulent velocity fluctuations a t  
Re = 4000; (a) in streamwise direction; (b) in radial direction. 

Increasing further the amplitudes of pulsations results in complete relaminarization 
of the flow whenever the duration a t  a subcritical Re is sufficiently long and no 
additional disturbances are introduced downstream. The mean velocity of the flow 
at Re = 4000 is only 1.8 m/s, so that even at the lowest frequency of pulsations 
(T = 4.5 s) the residence time of the fluid in the pipe spans several periods. Because 
the flow is naturally laminar a t  Re = 4000, turbulence was triggered artificially by a 
protuberance placed at the entrance to the pipe. Thus, if the flow relaminarizes 
because the instantaneous Re falls below its critical value during a fraction of the 
period, it will remain laminar throughout the rest of the pipe. The effect of 
relaminarization of the initially turbulent flow at low Reynolds numbers due to 
imposed pulsations was noticed by number of investigators (e.g. Ramaprian & Tu 
1980). It should be stressed that the experimental results presented in this paper 
are restricted to relatively low amplitudes of forcing (less than 35 yo of the flow rate) 
in order to avoid relaminarization. Transitional flow will be discussed separately. 

The radial distributions of the time-averaged, r.m.8. values of turbulent fluctuations 
in the axial and radial directions for steady and pulsating flows are compared in 
figure 10. The velocity fluctuations are normalized by the friction velocity u* which 
was calculated from the time-averaged pressure drop (u* = 13.1 cm/s at Re = 4000). 
There is no significant difference between mean values of and in steady and 
pulsating flows. The distribution of 3 and is in good agreement with earlier 
measurements made by Wygnanski & Champagne (1973) at comparable Reynolds 
number in steady flow. In the steady turbulent flow the normalization of uf by friction 
velocity u* is most appropriate. In many cases, however, bulk velocity 0, or the 
velocity on the centreline of the pipe are used for the sake of convenience. This can 
be justified by the weak dependence of u*/ on the Reynolds number, which stems 
from the fact that in turbulent flow the shear stress at the wall 7, is almost 
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proportional to IT, resulting in u* - 0; in fact, any double velocity correlation ui u, 
is proportional to p. Assuming the same relation for slowly varying turbulent 
periodic flows in which the turbulent structure has adequate time to adjust to the 
instantaneous distribution of velocity, we obtain : 

- 

- rw = ; i w + ( r w ) a  (B+(U))2 x @+2U(U), 
P P 

(3) 

provided that the amplitude of the pulsations in the bulk velocity [( U)] is small (i.e. 
[( U)]/U< 1) .  The amplitude of the time-dependent portion of the friction velocity 
[(u*)] can be expressed by: 

[(U*)l 2 - -- [(rw)l oc 2U[(U)], 
P 

which is analogous to the steady flow where u i  = rw/p a P. The amplitude of an 
oscillation in (u; u;) can therefore be normalized by [(u*)I2. Thus, for quasi-steady 
flow the following -relation holds: - 

<u;u;> - "1_Ul 
2Q<U)1 u2 ' (4) 

where [(uiu;)] is the amplitude of the oscillations in the corresponding velocity 
correlation. It seems reasonable to normalize the amplitudes of (u; u;) by 2r[( U)] 
and compare them with G/v". Any discrepancy between the radial distribution 
of [(u,'~;)] normalized in this manner and the time-averaged value indicates that the 
unsteady flow influences the turbulent structure. 

The ratio of [(~'~)]/20[( U ) ]  for three forcing periods at identical amplitudes of 
[( U)]/r x 15 %, is compared to the steady radial distribution of f l / a  in 
figure 11.  At high frequency (T = 0.78 s) the normalized v'alue of [(u'~)] is higher 
than the corresponding time-averaged value while at low frequencies [(u'~)] is lower 
thanZ2. The radial distributions of [(U'~)]/~V[( U)] and of @/Bare similar; some 
differences between the two may be observed in the wall region. It follows from (4) 
that in a quasi-steady flow r[(~'~)]/2u'2[(U)] = 1. Since u ' ~  is independent of 
periodic surging (figure lo), the results of figure 11 indicate that this last equation 
is approximately correct. The differences between the normalized distributions of 
[(u'~)] at lowest frequency and 

The dependence of ([(~'~)])!/2r[( U)] on the amplitude of bulk velocity [( U)] is 
rather weak (figure 12a). The data presented in this figure reflect a variation of 300 yo 
in the amplitude of excitation, which resulted in a 10% change in [<u'~)]. In 
figure 12 (a) a comparison is shown between measurements made with a rake of normal 
wires and measurements made with an X-wire at identical flow conditions 
(T = 1.34 s, [( U)]/r = 20%). There is reasonable agreement between the two sets 
of data. 

The radial distributions of ( [ (~'~)] /2r[(  U)])! for two amplitudes of the bulk 
velocity are compared with the time-mean distribution in figure 12 (b). No significant 
dependence of [(d2)]/2r[( U)] on the amplitude can be noticed. The measured values 
of dimensionless amplitude [(v'~)] are slightly higher than the corresponding 
time-averaged value, but the radial distributions of ( [(d2)]/2r[( V)])! and (Z'2)4/u 
are very similar. The amplitude of the turbulent fluctuations in the streamwise 
direction increases rapidly with r up to r / R  = 0.95, while the amplitude of the radial 
fluctuations is nearly independent of the radius. 

Figures 13(a)-(c) show the radial distribution of phases of (d2)  and (u) for 
three forcing periods (0.78 s < T < 2.4 s) at a constant amplitude of excitation 

- 

are discussed in Shemer & Kit (1984). 
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0, T =  0.78 s 

0 0.5 I 
r l  R 

FIQURE 11. The radial distribution of the square root of the amplitude of pulsations in 2 ~ ’ ~  at 
Re = 4000 and [( U ) ] / g  x 15 % at various frequencies of forcing. The solid line is the corresponding 
distribution of the r.m.9. values of velocity fluctuations in steady flow. 

0 0.5 1 .o 0 0.5 I .o 
r l R  r l R  

FIQURE 12. The radial distribution of the square root of the amplitude of pulsations in the velocity 
fluctuations a t  Re = 4000 and T = 1.34 s at various amplitudes of forcing. The solid line is the 
corresponding distribution of the r.m.8. values of velocity fluctuations in steady flow: (a) in 
streamwise direction; (b) in radial direction. 
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FIQUBE 13. The radial distribution of the phase angles of pulsations in velocity and in turbulent 
intensity in a streamwise direction at Re = 4000, [ < U ) ] / g  z 15% and at various frequencies of 
forcing. 

([(U)]/g x 15%). The angle between (d2)  and ( u )  increases with increasing 
frequency. The phase angle of (ut2) depends strongly on radial position, being a 
maximum at the centre of the pipe, and attaining a minimum in the region in which 
turbulent production is a maximum. $u is almost constant in the central core of the 
pipe. At lower frequencies (T > 1 s) q5,,: at r / R  x 0.7 actually leads the phase of (u). 
The effects of Re on the radial distributions of $, and $usa can be assessed from 
figure 14. The Reynolds numbers considered vary from 3900 to 7500. The radial 
distribution of q5,p becomes more uniform with increasing Re; the location of the 
minimum in the radial distribution of $,A moves towards the wall with increasing 
Re, as does the region of maximum production. 

The phase angle of (d2 )  is almost independent of the radial position (figure 15). 
$v,* is very close to $ u , ~  in the centre of the pipe, but it does not decrease at larger 
r /R.  The magnitude of the phase lag in (ut2) and (d2 )  in relation to  the pulsating 
velocity ( u )  depends slightly on the amplitude of the forcing, but the general shape 
of the radial distribution of the phase is not affected by the increase in the amplitude. 

In  order to check whether (ut2) and (d2 )  can be represented by a simple harmonic 
function st the fundamental frequency of forcingf, the ratio of the first two power- 
spectral coefficients c(2f0)/c(f0) was calculated for the phase-averaged r.m.s. 
values. This ratio was about 3% for [( U)]/U = 15%, and increased to 16 yo at 
[( U)]/u = 35 % . The non-harmonic distortion did not show significant dependence 
on the radial location. The non-harmonic behaviour of (d2 )  was similar. 

3.3.2. Reynolds stress 
Time-averaged Reynolds stresses -u'vt/u2 (figure 16) are also independent of the 

imposed oscillations. This was inferred earlier from the similarity of the time-averaged 
velocity profiles (see figure 2). Normalization of [(u'v')] by 2 g [ < U ) ]  (figure 17) 
indicates that the amplitudes of the Reynolds stress are insensitive to the amplitude 

-- 
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FIQURE 14. The radial distribution of the phase angles of pulsations in velocity and turbulent 
intensity in streamwise direction at various Reynolds numbers and [( lJ)]/o x 10 yo ; T = 1.6 s. 
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FIQURE 15. The radial distribution of phase angles of pulsations in velocity and in turbulent 
fluctuations in streamwise and radial directions at Re = 4000 and T = 1.34 s. 

of the pulsating bulk velocity. Qualitatively, the radial distribution of [(u'v')] 
resembles the time-averaged distribution; both grow linearly with the radius in 
the central region of the pipe, but the pulsating [(u'd)] attains its maximum 
somewhat closer to the wall than the time-averaged Reynolds stress. The normalized 
values of [( u'v')] are higher than the corresponding time-averaged Reynolds stresses, 
as is also the case with [ ( w ' ~ ) ]  (figure 12b). 
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FIUURE 16. The radial distribution of the time-averaged Reynolds 

Re = 4OOO in steady and pulsating flows (T = 1.34 8) .  

stress 
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FIQURE 17. The amplitude of pulsations in the Reynolds stress at Re = 
T = 1.34 s, compared to the time-averaged distribution. 

at 

4000 and 

The radial distribution of #,.,. relative to the pressure (figure 18) lies between the 
phase of ( u ' ~ )  and (da) at the corresponding amplitudes of the bulk velocity and 
radial positions (compare with figure 15). The phase angle of (u'v'> is equal to #,,P 
and &P in the central region of the pipe and attains a minimum near the wall (at 
0.7 < r/R < 0.8). The location of this minimum depends on the amplitude of forcing. 
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As a check on the harmonic behaviour of the Reynolds stresses, the 'power 
spectrum ' of the phase-averaged (u'v') was calculated, and the coefficients corres- 
ponding to the fundamental frequency and its first harmonic were compared. Their 
ratio was found to be similar to the ratio of coefficients estimated for (da)  (i.e. 
c( fo)/c(2fo) w 4 %  when the amplitude of forcing was 20%; and 16% when 
[( 01/77 = 35 % 1. 

3.3.3. The balance of forces in a pulsating $ow 

In a steady fully developed pipe flow there are two types of forces acting on every 
element of fluid and balancing one another: pressure forces, resulting from a 
favourable pressure gradient in the direction of the flow ; and shear forces caused 
by friction with the walls and acting in the opposite direction. In a non-steady flow 
an inertia has to be considered. All three forces have to be balanced a t  every instant, 
forming a triangle of forces for each frequency in the Fourier expansion. Only the 
leading term, at the fundamental frequency of pulsations, is considered here. 

The time-dependent part of the moment equation has the following form : 

where ( 7 )  is the ensemble-averaged pulsating part of the shear stress given by 

( 7 )  = p-- 

Integrating (5) from the centreline to another radial position r yields 

FIQURE 18. The radial distribution of the phase angle of the shear stress and the Reynolds 
stress at Re = 4000, T = 1.34 s and various amplitudes of forcing. 
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FIGURE 19. The balance of forces in pulsating flow. 

The integral on the left-hand side represents an instantaneous flow rate through the 
central region of the pipe up to the radial position r :  ( & ( r ) )  = 2xJorr’(u(r’))dr’. It 
is convenient to define P, Q ( r )  and i ( r )  in the complex form: 

and 

where the negative sign in the definition of 7(r)  is introduced for convenience, giving 
in the quasi-steady flow with negligible inertia the value of the phase angle #,+O. 
For the fundamental frequency, the differential equation (7) reduces to an algebraic 
expression 

(9) 
i w  
- - [ ( ~ ( r ) ) ]  exp { -iq+(r)} + 2’(7(r))1 exp { - i#,(r)} = L ( P ) I .  

The amplitude of the shear stress [ ( ~ ( r ) ) ]  and its phase angle #T can be evaluated 
from (9) provided that the experimental information about flow velocities and 
pressure is available. 

Taking into account that in turbulent flow the mass flux lags behind the pressure 
by an angle ranging from 0” to 90°, depending on frequency and Reynolds number, 
figure 19, representing (9), can be drawn. 

The shear stresses calculated from (9) can therefore be checked experimentally. The 
calculated radial distributions of [ ( ~ ) ] / p ,  normalized by 20[( V ) ] ,  are shown in 
figure 20. Three different amplitudes of pulsations are considered a t  a single period 
of T = 1.34 s. It is seen that the suggested normalization leads to radial distribu- 
tions of [ (7>] /2pn[(U)]  which collapse fairly well on a single curve. The com- 
parison between the measured Reynolds stress (figure 17) and calculated stress 
using (9) is satisfactory except in the wall region where the viscous term in (6) 
becomes important. In the central region of the pipe -a(u)/ar x 0, and therefore 
- ( 7 ) / p  = (u’v’), yet the measured values of [(u’v’)] are consistently lower than 
[ ( 7 ) ] / p .  The maximum discrepancy, however, is about 15% (figure 20), giving an 

n: r2 Pr 
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FIGURE 20. The amplitude of pulsations in the shear stress at Re = 4000, T = 1.34 s and various 
amplitudes of forcing, compared with the radial distribution of the amplitude of pulsations in the 
Reynolds stress. 

estimate of the possible error resulting from the use of experimentally measured 
velocities and pressure gradients in (9). 

The dependence of [ ( 7 ) ] / 2 p n [ ( U ) ]  on the frequency of forcing is shown in 
figure 21. Changing the frequency of the imposed oscillations affects the shape and 
the magnitude of the radial distribution of [(7)]; in the central region of the pipe the 
slope of this quantity with respect to the radial distance from the centre increases 
with frequency, but the location a t  which it attains a maximum occurs farther from 
the wall than a t  lower frequencies. At  the lowest frequency, [ ( T ) ]  is proportional to 
the radial position up to the largest r / R  measured, thus behaving like the radial 
distribution of the time-averaged shear stress. 

A phase difference exists between the oscillations in flow rate and in shear stress. 
The phase lag of ( 7 ) ,  q5,, as calculated from (9), shows only slight dependence on 
amplitude (figure 18), with one exception corresponding to the highest amplitude of 
forcing ([( U ) ] / o  = 35 %). The calculated values of q5? are compared in figure 18 with 
directly measured +,.,. at identical amplitudes of forcing. The agreement between 
the corresponding distributions of 9, and q5,.,. in the central region of the pipe is good, 
providing additional verification for the calculated values of (7). The values of q5, 
and q5,.,. are quite different in the wall region where the viscous part of the shear 
stress becomes important ; q5? decreases towards the wall while q5,.,, increases 
(figure 18). The decrease in q5, is more pronounced at higher frequencies (figure 22) .  
The phase lag of the shear stress behind the pressure is strongly dependent on 
frequency. Even a t  the lowest frequency of pulsations (T = 4.5 s) there is still a 
considerable phase angle between - ( 7 )  and -(ap/ax), in spite of the fact that the 
phase difference between - (7) and (u) vanishes (figure 22). Thus, for the purpose 
of force balance, the lowest frequency of excitation used in this experiment is not 
low enough for the flow to be considered quasi-steady. 
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FIQURE 21. The amplitude of pulsations in the shear stress at Re = 4000, 
[< U ) ] l o  s 10 % and various frequencies of forcing. 

FIGURE 22. The phase angles of the pulsations in the shear stress and in the axial velocity at 
Re = m, [ ( V ) ] / B x  10% and various frequencies of forcing: 0, dl,  T=0178s; 0,  #u, 
T = 0.78 s; A, 9,. T = 1.23 S; A, #u, T = 1.23 S; 0, #r, T = 2.40 S; ., #", T =  2.40 S; x ,  #1, 
T = 4.50 s; @, #,, T = 4.50 S. 
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FIGURE 23. Force triangles at r / R  = 0.61, [( U ) ] / u  % 15% 
and three frequencies of forcing (Re = ao00). 

The calculated values of [(T)] and q5T can be used to illustrate the balance of forces 
in the pulsating flow by drawing vector diagrams. Figure 23, which cannot be drawn 
to scale, shows relevant vectors at a given radial location ( r / R  = 0.61) for three 
frequencies of excitation (all vector moduli are normalized by the modulus of P), as 
calculated from experimental data .in accordance with (9). Increasing the frequency 
results in a smaller phase angle between the pressure and the acceleration vector. The 
length of Q relative to  the pressure decreases with increasing frequency but the 
product w [  ( Q ) ] ,  which corresponds to the acceleration vector, increases with 
frequency. The angle between 7 and P increases with increasing frequency, as shown 
in figure 23. At a given radial position there is no practical difference between - ( ~ ) / p  
and (u’v’). The phase angle of - ( 7 )  may thus be considered equal to the phase angle 
of the Reynolds stress. The Reynolds stress hardly lags behind the flow rate at low 
frequencies, but this phase lag attains approximately 80’ at T = 0.78 s. At high 
frequencies, the Reynolds stress nearly opposes the acceleration vector. 

4. Discussion 
The radial distribution of [ ( u ’ ~ ) ] ,  [ ( v ’ ~ ) ] ,  [(u’v’)], and [ ( ~ ) ] / p ,  normalized by 

2D[( U ) ] ,  are in fair agreement with the radial distribution of the corresponding 
time-averaged parameters, normalized by V. Consequently, the linearized dimen- 
sionless quantities chosen are physically sound. There are, however, some differences 
dependent on the frequency of forcing, which should be discussed in detail. 

It seems reasonable to begin with the Reynolds stress, because this is the only 
turbulent quantity appearing in the time-averaged momentum equation for the fully 
developed turbulent pipe flow (Reynolds equation), and hence is directly related to  
the mean quantities. As can be seen by comparing figure 18 with figure 15, (u’v’) 
is lagging behind ( u )  at all radial positions. 

The most probable reason for this phase lag is the slow adaptation (or relaxation) 
of turbulence to instantaneous mean shear. It is natural to assume that turbulence 
possesses ‘memory’ (Nee & Kovasznay 1969; Narasimha & Prabhu 1972) and 
responds to  a change in the mean flow after some delay. Shemer & Wygnanski (1981) 
proposed a simple model for the time-dependent turbulent flow in which eddy 
viscosity for the oscillating part was represented by a complex number, thus 
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accounting for the experimentally observed phase difference between (au/ar> and 
(u'v'). Calculations based on this model gave qualitatively the correct distribution 
#u(r)  in turbulent pulsating flow. 

Reynolds stresses were measured directly in one experiment in which the frequency 
was held constant. In  that case, the calculated value of the oscillating part of the shear 
stress - ( 7 ) / p  was almost equivalent to the Reynolds stress in the central region of 
the pipe. At low frequency (T = 4.5 s), the rate of change in the bulk velocity is slow, 
thus allowing accommodation of the turbulent structure to the phase-locked velocity 
distribution. This conclusion was drawn from comparison of the phase angles of the 
shear stress q$ measured at various frequencies with #u (both shown in figure 22). 
The changes in the turbulent characteristics of the flow are therefore in phase with 
the mass flux and the pulsating Reynolds number. 

It can be seen from the vector triangles (figure 23) that the phase lag between mass 
flux and the pressure drop tends to 90" as the frequency increases, and all three 
vectors in the force triangle become collinear. Under these conditions the Reynolds 
stresses, which differ from ( 7 ) / p  only in the vicinity of the wall, lag behind the mass 
flux by 90". A t  sufficiently high frequencies, a minimum in the turbulent activity 
corresponds to a maximum in acceleration. 

The radial distributions of phase angles of (uf2)  and ( u f v f )  are similar. Contrary 
to Reynolds stress, <uf2) was measured twice, once with x-wire and the second time 
with the rake of normal wires at various amplitudes and frequencies of forcing. The 
oscillations in u ' ~  usually lag behind (u ) ;  the phase angle of (uf2) is strongly 
dependent on the radial position and attains a minimum in the region where the 
production of turbulent energy is maximum. In this region, however, (uf2> may even 
lead (u). 

The rate of change in the intensity of the longitudinal velocity fluctuations (i.e. 
a(uf2)/at) is governed by the product of the Reynolds stress and the velocity gradient. 
The temporal change in the phase-averaged velocity gradient produces a most 
pronounced change in (uf2), where the product of the Reynolds stress with -au/ar 
attains maximum. The phase difference between ( u )  and (uf2) is thus minimal in 
the region of maximum production, which occurs at approximately r / R  = 0.7 at these 
Reynolds numbers. Once generated, the longitudinal velocity fluctuations diffuse 
across the pipe causing the phase difference between (u) and (uf2) to increase with 
increasing distance from the region of maximum production. Maximum phase lag 
occurs in the central core of the pipe where there is no direct production of the 
turbulent energy. The radial velocity fluctuations do not extract energy directly from 
the mean flow, but rather through pressure-velocity correlations ; therefore they are 
less likely to be affected by local changes in the mean velocity. Thus, is similar 
to #v,s in the centre of the pipe, where both components acquire their energy via 
a diffusion process; however, #,,a remains independent of radial location. The 
relaxational mechanism proposed by Shemer & Wygnanski (1981) accounts for the 
frequency dependence of #u-#uja in the central region of the pipe. A decrease in 
relaxation time may also be responsible for the decrease in phase difference between 
(u) and (uf2) with increasing Reynolds number (figure 14) (see also Laufer & Badri 
Narayanan 1971). A t  fairly low frequencies (T > 1 s) and low Reynolds numbers 
(uf2) may lead (u> at certain radial locations instead of lagging behind as it does 
at higher frequencies (T = 0.78 8 ) .  In  the limiting case of very low frequency, a 
quasi-steady flow is established for which the phase difference between (uf2)  and (u) 
has to vanish at all radial positions. 

The proposed normalization suggests that the radial distribution of the amplitudes 
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for the double-velocity correlations at a single point have to coincide with their 
normalized distribution for steady flow when the frequencies considered are very low. 
At the other extreme, at very high frequencies when the period of pulsations is shorter 
than the characteristic response time of the turbulent structure, the relaxational 
approach leads to the conclusion that the oscillations in the turbulent quantities have 
to vanish; thus the turbulence in this limiting case becomes independent of the phase 
angle. Brown, Margolis & Shah (1969) measured the oscillating skin-friction factor 
at very high frequencies (up to 3000 Hz) and realized that with increasing frequency 
the dependence of the friction factor on frequency tends to the laminar case. They 
concluded that the turbulence becomes ‘frozen’ and the oscillating part of the flow 
exhibits laminar-like behaviour. The present experimental results indicate that the 
amplitude of oscillations in ( u ’ ~ )  increases with increasing frequency and may exceed 
the time-mean values of [(u)] at higher frequencies (figure 11). The absolute 
differences are not large and may be partially attributed to the inaccuracy in the 
assumption that ui u; cc P ,  as well as to an experimental error. Nevertheless, 
dependence of the amplitude distribution on frequency contradicts some prevailing 
concepts. The same holds true with regards to the amplitudes of the shear stress in 
the central region of the pipe, where the influence of viscosity is negligible and the 
Reynolds stress is the main contributor to (7). The relaxational mechanism has to 
‘freeze’ the Reynolds stress at high frequencies of forcing, but the experimental 
results indicate that the amplitude of the shear stress increases with increasing 
frequency (figure 21). Based on the above-mentioned discussion one may suggest that 
the variation of the amplitudes of ( u ’ ~ ) ,  (u’v’) and (7) with frequency is not 
monotonic. 

5. Conclusions 
(i) Mean properties of the flow are not affected by pulsations in both laminar- and 

turbulent-flow regimes, provided the amplitude is not excessively high. 
(ii) The oscillating part of the flow parameters can be represented by amplitude 

and phase at excitation frequency only. This representation becomes less accurate 
for turbulent quantities at  higher amplitudes of forcing. 

(iii) The radial distributions of amplitudes and phases of velocity oscillations are 
strongly dependent on the flow regime in the pipe (i.e. whether it is laminar or 
turbulent). The relatively low amplitudes of forcing used in the present work had little 
effect on the radial distributions of amplitudes and phase angles in the range of 
variables considered. The effect of Reynolds number on the phase distribution in the 
turbulent flow is substantially more significant. 

(iv) A normalization procedure relating steady and oscillating components in 
turbulent flow was suggested; a fair agreement was found between the properly 
normalized time-averaged and time-dependent quantities for the entire range of 
frequencies considered. 

(v) Slow adaptation of turbulence is responsible for some important features in the 
radial distributions of the turbulent quantities and their phase relations. 

This work was supported in part by a grant from the Air Force Office of Scientific 
Research no. 77-3275. 
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